

### **Features**

- 3.4V to 5.5V input range for Efficient Linear Charging
- Programmable Charging Current by external resistor: YHM2714: Max.500mA YHM2715: Max.750mA YHM2716: Max.750mA
- Preset 4.2V/4.35V with ±0.5% Accuracy: YHM2714: 4.2V
  YHM2715: 4.35V
  YHM2716: 4.4V
- Device Status Output from STA pin
- C/20 Charge Termination
- 2.8V Pre Charge Threshold
- Built-In Robust Protection Including Battery OVP, Thermal Regulation
- Safety Related Certifications: IEC62368-1:2018 CB Certification
- Tiny 0.67mm x 1.02mm 6-pin WLP with 0.35mm pitch

### Applications

- Smart Watch/Band
- TWS Earbud
- Bluetooth Portable Device

#### **General Description**

YHM2714/5/6 is tiny single-cell Li-ion battery charger for space-limited portable applications. The full charger function features Pre-charge, constant current fast charge and constant voltage regulation, charge termination, and auto recharge.

YHM2714/5/6 can deliver up to 500mA/750mA charging current, be programmed externally with a single resistor. YHM2714/5/6 automatically terminates the charge cycle when the charge current drops to 1/20 of the programmed value after the final float voltage is reached. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature.

The device status is indicated on STA pin output for charging, discharging and charge done.

YHM2714/5/6 comes in a 6-bump, 0.35mm pitch, 0.67mm x1.02mm wafer-level package (WLP).







### YHM2714/5/6 Pin Configurations



### Fig 2. YHM2714/5/6 WLP-6 Pin Assignment(Top Through View)

### YHM2714/5/6 WLP Pin Descriptions

| WLP | Name | Description                                                                                                                                                                                     |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1  | IN   | Input and Power Supply. Bypass this input with a ceramic capacitor to ground.                                                                                                                   |
| A2  | STA  | Status Output.                                                                                                                                                                                  |
| B1  | PMID | Place at least 4.7µF ceramic capacitor from PMID to GND.                                                                                                                                        |
| B2  | GND  | Ground.                                                                                                                                                                                         |
| C1  | BAT  | Battery Pin. Place at least 2.2 $\mu F$ ceramic capacitor from BAT to GND, and as close to the IC as possible.                                                                                  |
| C2  | ISNS | Charge Current Program Pin. The charge current is programmed by connecting a 0.1% resistor to GND. This pin can be floating or connect to GND by huge resistor to achieve nearly stop charging. |

### **Function Table**

| STA PIN                                          | Status                       |
|--------------------------------------------------|------------------------------|
| Internally pull down to ground by 5kΩ            | Charging                     |
| Internal pull up to<br>V <sub>BAT</sub> by 0.1µA | Other Status except Charging |



### 1 Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Disclaimer: YHMICROS reserves the right to make any change in circuit design, specification or other related things if needed without notice at any time.

| Symbol           | Parame                                                                     | Min.                                 | Max.                                             | Unit |    |  |
|------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------|----|--|
| Vin              | IN to GND                                                                  | -0.3                                 | 6<br>(8V for 500µs)                              | V    |    |  |
| VBAT             | BAT to GND                                                                 |                                      | -0.3                                             | 6    | V  |  |
| Vother           | Other Pin to GND                                                           | -0.3                                 | Max(V <sub>IN</sub> ,V <sub>BAT</sub> )<br>+ 0.3 | V    |    |  |
| lın              | Input Current                                                              | Input Current                        |                                                  |      |    |  |
| T <sub>STG</sub> | Storage Junction Temperature                                               | -65                                  | +150                                             | °C   |    |  |
| TJ               | Operating Junction Temperature                                             | 7                                    | +150                                             | °C   |    |  |
| TL               | Lead Temperature (Soldering, 1                                             |                                      | +260                                             | °C   |    |  |
| θ <sub>JA</sub>  | Thermal Resistance, Junction-t<br>(100mm <sup>2</sup> pad of 1 oz. copper) |                                      |                                                  | °C/W |    |  |
| All Pins         | Electrostatic Discharge                                                    | Human Body Model,<br>EIA/JESD22-A114 | 2                                                |      | КV |  |
|                  | Capability                                                                 | Charged Device Model,<br>JESD22-C101 | 1                                                |      |    |  |

Note 1. Refer to JEDEC JESD51-7, use a 4-layerboard

### 2 Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance.

| Parameters                                                                     | Min. | Max. | Unit |
|--------------------------------------------------------------------------------|------|------|------|
| Vin                                                                            | 3.4  | 5.5  | V    |
| І <sub>СНG</sub>                                                               | 10   | 750  | mA   |
| Vother                                                                         | 0    | 5.5  | V    |
| Cin                                                                            | 0.1  |      | μF   |
| C <sub>PMID</sub> (at least 3µF of ceramic capacitance with DC bias de-rating) | 4.7  |      | μF   |
| Сват                                                                           | 2.2  |      | μF   |
| Ambient Operating Temperature, T <sub>A</sub>                                  | -40  | 85   | °C   |
| Operating Junction Temperature, TJ                                             | -40  | 150  | °C   |



### **3** Detailed Electrical Characteristics

 $(V_{IN} = 5V, V_{BAT} = 3.7V, T_A = -40^{\circ}C$  to +85°C. Typical values are at  $T_A = +25^{\circ}C$ , unless otherwise noted) (Note 1)

| PARAMETER                                              | SYMBOL             | CONDITIONS                                              | MIN  | TYP  | MAX | UNITS |  |
|--------------------------------------------------------|--------------------|---------------------------------------------------------|------|------|-----|-------|--|
| Input                                                  |                    |                                                         | •    |      |     |       |  |
| Input Voltage Range                                    | VIN                |                                                         | 3.4  |      | 5.5 | V     |  |
| Input Undervoltage Lockout<br>Threshold                | Vin_uvlo           | Input Falling                                           |      | 3.2  |     | V     |  |
| Input Undervoltage Lockout<br>Threshold Hysteresis     | VIN_UVLO_HYS       | Input Rising                                            |      | 200  |     | mV    |  |
| Quiescent Supply Current                               |                    | T <sub>A</sub> =+25°C, Charge Mode                      | 0.5  |      | m۸  |       |  |
| Quiescent Supply Current                               | IINQ               | $-40^{\circ}C \le T_{A} \le +85^{\circ}C$ , Charge Mode |      | 2    |     |       |  |
| Battery Charger                                        |                    |                                                         | •    |      |     |       |  |
| Battan / Quiagaant Current                             |                    | V <sub>IN</sub> = 5V, Charge Done                       | - V  | 2    |     | μA    |  |
| Battery Quescent Current                               | IBATQ              | V <sub>IN</sub> = 0V, V <sub>BAT</sub> = 4.35V          |      | 150  |     | nA    |  |
|                                                        |                    | YHM2714, T <sub>A</sub> = +25°C                         |      | 4.2  |     | V     |  |
|                                                        | N/                 | YHM2715, T <sub>A</sub> = +25°C                         |      | 4.35 |     | V     |  |
| Battery Charge Voltage Regulation                      | V <sub>REG</sub>   | YHM2716, T <sub>A</sub> = +25°C                         |      | 4.4  |     | V     |  |
|                                                        |                    | Accuracy, $T_A = +25^{\circ}C$                          | -0.5 |      | 0.5 | %     |  |
|                                                        |                    | $R_{SNS} = 25k\Omega$                                   |      | 60   |     |       |  |
|                                                        | Ireg               | $R_{SNS} = 10k\Omega$                                   |      | 150  |     | mA    |  |
| Fast Charge Current                                    |                    | R <sub>SNS</sub> = 5kΩ                                  |      | 300  |     |       |  |
|                                                        |                    | Accuracy, $T_A = +25^{\circ}C$ , $R_{SNS} = 2k\Omega$   | -5   |      | 5   | %     |  |
| Junction Temperature Threshold                         | T <sub>J_REG</sub> | 2                                                       |      | 120  |     | °C    |  |
| Pre-Charge Current                                     | IPRE               | 2                                                       |      | 4    |     | mA    |  |
| Pre-Charge Threshold Voltage                           | VBAT_PRE           | VBAT Rising                                             | 2.7  | 2.8  | 2.9 | V     |  |
| Pre-Charge Threshold Hysteresis                        |                    |                                                         |      | 100  |     | mV    |  |
| Termination Current Threshold                          | Iterm              | =0.05×I <sub>REG</sub> , R <sub>SNS</sub> = $2k\Omega$  |      | 12.5 |     | mA    |  |
| Termination Deglitch Time                              | tterm_dgl          |                                                         |      | 32   |     | ms    |  |
| Battery Auto-recharge Voltage<br>Threshold             | VRECH              |                                                         |      | 200  |     | mV    |  |
| Battery Auto-recharge Voltage<br>Deglitch Time         | trech_dgl          |                                                         |      | 120  |     | ms    |  |
| Battery Overvoltage Protection<br>Threshold            | Vbat_ovp           | VBAT Rising, higher than VREG                           |      | 100  |     | mV    |  |
| Battery Overvoltage Protection<br>Threshold Hysteresis | VBAT_OVP_HYS       |                                                         |      | 90   |     | mV    |  |
| THERMAL PROTECTION                                     |                    |                                                         |      |      |     |       |  |
| Thermal Shutdown                                       | TSHDN              |                                                         |      | 150  |     | °C    |  |



| Thermal Hysteresis         | T <sub>HYST</sub> |                        | 20    | °C |
|----------------------------|-------------------|------------------------|-------|----|
| LOGIC                      |                   |                        |       |    |
| Output High Voltage of STA | Voh_sta           |                        | 1.475 | V  |
| Output Low Voltage of STA  | Vol_sta           | I <sub>SINK</sub> =5mA | 0.15  | V  |

**Note 1:** All specifications are 100% production tested at  $T_A = +25$ °C, unless otherwise noted. Specifications are over  $T_A = -40$ °C to +85°C and are guaranteed by design.

Note 2: Guaranteed by design; not production test.

MIGOS



### 4 Detailed Description

#### 4.1 General Introduction

The YHM2714/5/6 is a tiny single-cell standalone Li-ion battery charger. The full charger function features Pre-charge, constant current fast charge and constant voltage regulation, charge termination, and auto recharge. The internal bias circuit of the IC is powered from  $V_{MAX}$ , which is the higher voltage of either  $V_{IN}$  or  $V_{BAT}$ . The POR voltage of the device is 1.8V.

#### 4.2 Charge Profile

A charge cycle begins when  $V_{IN}$  rises above the UVLO threshold level. If the  $V_{BAT}$  is less than 2.8V, the charger enters Pre-charge mode. In this mode, the YHM2714/5/6 supplies 4mA charge current for dead battery. When  $V_{BAT}$  rises above 2.8V, the charger enters constant-current mode, where the programmed charge current is supplied to the battery. When  $V_{BAT}$  approaches  $V_{REG}$ , the YHM2714/5/6 enters constant-voltage mode and the charge current begins to decrease. When the charge current drops to 1/20 of the programmed value, the charge cycle ends. When this voltage drops below the recharge threshold, another charge cycle begins and current is once again supplied to the battery.



## 4.3 Charge Current Programming

The fast charge current is programmed using a single resistor from the ISNS pin to ground. The program resistor and the charge current are calculated using the following equations:

 $R_{SNS} = 1500/I_{REG}$ .

#### 4.4 Thermal Regulation and Thermal Shutdown

The YHM2714/5/6 will reduce the programmed charge current by half if the die temperature attempts to rise above 120°C. This feature protects the YHM2714/5/6 from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the chip. When the junction temperature reaches 150°C, both Q1 and Q2 turn off.



#### 4.5 Status

The STA pin can indicate charging, discharging and charge done status. When the battery is in discharging or charge done, the STA pin is internally pull up to BAT voltage by  $0.1\mu$ A. When the battery is in charging, the STA pin is internally pull down to ground by  $5k\Omega$ . If pull down STA pin to ground when the chip is in charging, the typical power consumption is  $0.4\mu$ A (V<sub>BAT</sub>=4V).



### 5 Control Flow Chat





### **Package Dimensions**

### WLCSP-6 0.67x1.02



#### COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

| •      |           |           | ,     |  |  |
|--------|-----------|-----------|-------|--|--|
| SYMBOL | MIN       | NOM       | MAX   |  |  |
| А      | 0.483     | 0.528     | 0.573 |  |  |
| A1     | 0.130     | 0.150     | 0.170 |  |  |
| A2     | 0.353     | 0.378     | 0.403 |  |  |
| D      | 1.000     | 1.020     | 1.040 |  |  |
| D1     |           | 0.700BSC  |       |  |  |
| E      | 0.650     | 0.670     | 0.690 |  |  |
| E1     | 0.350BSC  |           |       |  |  |
| b      | 0.200     | 0.220     | 0.240 |  |  |
| е      |           | 0.350BSC  |       |  |  |
| ×1     |           | 0.160 REF | -     |  |  |
| ×2     | 0.160 REF |           |       |  |  |
| y1     |           | 0.160 REF |       |  |  |
| y2     |           | 0.160 REF | -     |  |  |
|        |           |           |       |  |  |



### **Ordering Information**

| Part Number | Temp Range    | Pin Package | Top Mark | MOQ  |
|-------------|---------------|-------------|----------|------|
| YHM2714W6T  | -40°C to 85°C | 6 WLCSP     | YW<br>XX | 3000 |
| YHM2715W6T  | -40°C to 85°C | 6 WLCSP     | YW<br>XX | 3000 |
| YHM2716W6T  | -40°C to 85°C | 6 WLCSP     | YW<br>XX | 3000 |

T = Tape and reel.

YW: Date Code. Y = year, W = week. MICROS CONFIDENTI

XX: Internal tracking ID.

Email Requests to: SALES@YHMICROS.COM YHMicros Website: WWW.YHMICROS.COM